Seeq maskinlæring crop

Brukerne tvinges ikke til å basere seg på én enkelt maskinlærings-leverandør

Seeq utvider støtten for maskinlæring for å demokratisere IT-innovasjon

Seeq Corporation, ledende innen tingenes internett (IIoT) avansert analyseprogramvare for produksjon og industri, kunngjør nå utvidelse av sin virksomhet i integrering av maskinlæringsalgoritmer i Seeq-applikasjoner. Dette vil gjøre det mulig for virksomheter å operasjonalisere sine IT-investeringer, open source og tredjeparts maskinlæringsalgoritmer slik at disse blir lett tilgjengelig for førstelinje-ansatte.

Seeqs kunder omfatter selskaper innen olje og gass, farmasøytisk, kjemisk, energi, gruvedrift, mat og drikke og andre foredlingsindustrier. Investorer i Seeq, som til dagens dato har anskaffet over 100 millioner dollar, omfatter Insight Ventures, Saudi Aramco Energy Ventures, Altira Group, Chevron Technology Ventures og Cisco Investments.

Seeqs strategi for å åpne for maskinlærings-innovasjon sørger for sluttbrukertilgang til algoritmer fra en rekke kilder slik at brukerne ikke tvinges til å basere seg på én enkelt maskinlærings-leverandør eller -plattform. Dette omfatter hele mangfoldet av algoritmer og de ulike algoritme-typene som er tilgjengelige for organisasjoner, inkludert:

-Open source-algoritmer og andre åpne ressurser. For eksempel skal Seeq denne uken publisere to Seeq-utvidelser i GitHub, inkludert algoritmer og arbeidsflyter for korrelasjons- og klyngeanalyse som brukere kan endre og forbedre etter behov.

-Kundeutviklede algoritmer i Seeq Data Lab—eller maskinlærings-plattformer som Microsoft Azure Machine Learning, Amazon SageMaker, Anaconda og andre—som en del av IT/digitale omstillingsinitiativer.

-Tredjeparts-algoritmer fra programvareleverandører, partnere og akademiske institusjoner. AWSs Lookout for Equipment, Microsoft Azure AutoML, BKO Services’ Pump Prediction og Brigham Young Universitys open-source-tilbud er eksempler på det framvoksende markedet for algoritmer spesifikke for industrien og det vertikale markedet.

Seeq-initiativet griper også fatt i en kritisk “last mile”-utfordring, nemlig å skalere og produksjonssette algoritmer i industrivirksomheter, ved å tilby de ansatte på anlegget IT-innovasjon i brukervennlige applikasjoner: Seeq Workbench for avansert analyse, Organizer for publisering av innsikt og Seeq Data Lab for ad hoc Python-skripting.

Dette kommer i tillegg til Seeqs støtte for de grunnleggende suksesselementene innen maskinlæring. Dette inkluderer tilgang til alle produksjonsdatakilder—historiske, kontekstuelle og produksjonsapplikasjoner—for datarensing og -modellering, støtte for samarbeid og kunnskapsoverføring mellom ansatte, rask iterasjon og å åpne for ytelsesbaserte kontinuerlige forbedrings-arbeidsflyter.

Seeq Corporation, ledende innen tingenes internett (IIoT) avansert analyseprogramvare for produksjon og industri, kunngjør nå utvidelse av sin virksomhet i integrering av maskinlæringsalgoritmer i Seeq-applikasjoner. Dette vil gjøre det mulig for virksomheter å operasjonalisere sine IT-investeringer, open source og tredjeparts maskinlæringsalgoritmer slik at disse blir lett tilgjengelig for førstelinje-ansatte.

Seeqs kunder omfatter selskaper innen olje og gass, farmasøytisk, kjemisk, energi, gruvedrift, mat og drikke og andre foredlingsindustrier. Investorer i Seeq, som til dagens dato har anskaffet over 100 millioner dollar, omfatter Insight Ventures, Saudi Aramco Energy Ventures, Altira Group, Chevron Technology Ventures og Cisco Investments.

Seeqs strategi for å åpne for maskinlærings-innovasjon sørger for sluttbrukertilgang til algoritmer fra en rekke kilder slik at brukerne ikke tvinges til å basere seg på én enkelt maskinlærings-leverandør eller -plattform. Dette omfatter hele mangfoldet av algoritmer og de ulike algoritme-typene som er tilgjengelige for organisasjoner, inkludert:

-Open source-algoritmer og andre åpne ressurser. For eksempel skal Seeq denne uken publisere to Seeq-utvidelser i GitHub, inkludert algoritmer og arbeidsflyter for korrelasjons- og klyngeanalyse som brukere kan endre og forbedre etter behov.

-Kundeutviklede algoritmer i Seeq Data Lab—eller maskinlærings-plattformer som Microsoft Azure Machine Learning, Amazon SageMaker, Anaconda og andre—som en del av IT/digitale omstillingsinitiativer.

-Tredjeparts-algoritmer fra programvareleverandører, partnere og akademiske institusjoner. AWSs Lookout for Equipment, Microsoft Azure AutoML, BKO Services’ Pump Prediction og Brigham Young Universitys open-source-tilbud er eksempler på det framvoksende markedet for algoritmer spesifikke for industrien og det vertikale markedet.

Seeq-initiativet griper også fatt i en kritisk “last mile”-utfordring, nemlig å skalere og produksjonssette algoritmer i industrivirksomheter, ved å tilby de ansatte på anlegget IT-innovasjon i brukervennlige applikasjoner: Seeq Workbench for avansert analyse, Organizer for publisering av innsikt og Seeq Data Lab for ad hoc Python-skripting.

Dette kommer i tillegg til Seeqs støtte for de grunnleggende suksesselementene innen maskinlæring. Dette inkluderer tilgang til alle produksjonsdatakilder—historiske, kontekstuelle og produksjonsapplikasjoner—for datarensing og -modellering, støtte for samarbeid og kunnskapsoverføring mellom ansatte, rask iterasjon og å åpne for ytelsesbaserte kontinuerlige forbedrings-arbeidsflyter.

Caroline Haglund

Lunner kommune tar i bruk KI for smartere avløpsrensing

Lunner kommune tester ny teknologi ved Harestua og Volla renseanlegg. Ved hjelp av kunstig intelligens skal avløpsvann renses med mindre kjemikaler, samtidig som driften effektiviseres og kostnader kuttes.

AQ7290-seriens optiske tidsdomenereflektometer.

Nytt OTDR fra Yokogawa

Yokogawa Test & Measurement Corporation lanserer AQ7290-serien, et svært pålitelig og nøyaktig felttestinstrument for optisk fiber som vil lette konstruksjonen og vedlikeholdet av raskt voksende optiske kommunikasjonsnettverk. AQ7290 er utstyrt med nye funksjoner som forbedrer betjening og brukervennlighet. Seks standard- og høyytelsesmodeller er tilgjengelige i serien, og tilbyr et utvalg av to eller tre bølgelengder for å dekke et bredt spekter av fiberoptiske installasjons- og vedlikeholdsmålingsbehov.

Siemens

Nytt generativt AI-drevet vedlikeholdstilbud fra Siemens

Siemens Industrial Copilot, en generativ AI-basert assistent, styrker hele verdikjeden – fra design og planlegging til engineering, drift og tjenester. Med dette ekspanderer Siemens sitt Industrial Copilot-tilbud med utvidede muligheter for Senseye Predictive Maintenance. Den generative AI-drevne løsningen vil støtte alle trinn i vedlikeholdssyklusen, fra reparasjon og forebygging til prediksjon og optimalisering.

Endress+Hauser

Solid fremgang for Endress+Hauser tross global uro: Satser tungt på innovasjon og gassanalyse

Til tross for krevende globale rammevilkår leverte Endress+Hauser et sterkt resultat i 2024, med økt satsing på gassanalyse, bærekraft og opplæring.